A SUPPORT VECTOR MACHINE TO PREDICT IMPENDING PRE-SYNCOPE FROM HEMODYNAMIC DERIVED SIGNALS DURING PROGRESSIVE CENTRAL HYPOVOLEMIA

Björn J.P. van der Ster1,2,3, Berend E. Westerhof2,3,4, Wim J. Stok2,3, Johannes J. van Lieshout1,2,3,5

1Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
2Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
3Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, Amsterdam, the Netherlands.
4Department of Pulmonary Diseases, Institute for Cardiovascular Research, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands.
5MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, The Medical School, University of Nottingham Medical School, Queen's Medical Centre, United Kingdom.

Introduction: Hypovolemic shock is characterized by a critically reduced central blood volume (CBV). Traditional parameters do not predict onset of hypovolemic shock. We hypothesized that a machine learning model detects more subtle changes within hemodynamic signals that predict impending pre-syncope as an expression of a critically reduced CBV.

Methods: In 42 healthy subjects we provoked pre-syncope by reducing CBV using continuous lower body negative pressure. Next to blood pressure and heart rate, we introduced a new set of blood pressure wave features. We trained a support vector machine to predict time remaining till pre-syncope using a leave-one-out method. We expressed the model performance as absolute error and a squared correlation coefficient (r^2).

Results: In 72\% of the predictions the model followed the decreasing time remaining towards pre-syncope. Mean r^2 was 0.43 [0.13 - 0.64]. In 13 subjects the model predicted pre-syncope with an median error of -49 seconds [-312, -27].

Conclusion: The model detects a trend towards pre-syncope conforming to a worsening condition of subjects in a controlled progressive hypovolemia setting, but cannot pinpoint the onset of pre-syncope exactly. Future research may reveal the most valuable input feature and allow for testing current models during real hemorrhage.

Word count: 195.